
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMRER 1989 1681

Frequency-Domain Spectral Balance Using
the Arithmetic Operator Method

CHAO-REN CHANG, MICHAEL B. STEER, MEMBER, IEEE, AND

GEORGE W. RHYNE, MEMBER, IEEE

Abstract —A frequency-domain spectral balance method for the simula-

tion of nonlinear analog circuits with multidimensiormf nonlinearities is

presented. The method is coupled with a combination of ShamansHl and

block Newton iteration schemes to produce an efficient general-purpose

simulator. The technique is verified with measurements of a MESFET

amplifier with single-tone and two-tone excitations.

I. INTRODUCTION

M ICROWAVE circuit designers have traditionally re-

lied on the use of experimental modifications to

ensure that their designs meet required specifications. This

practice, however, is becoming increasingly impractical as

circuit dimensions shrink and circuit complexity increases.

Thus there is an increasing interest in the computer-aided

design of microwave circuits. A frequency-domain spectral

balance method is developed here for the evaluation of the

current/voltage relation of multidimensional nonlineari-

ties (e.g., current through a nonlinearity being a function

of two or more voltages in the circuit). This is coupled with

a combination of Shamanskii and modified Newton itera-

tion schemes to yield an efficient and accurate simulator

for the analysis of nonlinear circuits having multifrequency

excitations.

Although the methods for analyzing nonlinear circuits

are varied, they are all based on solving a set of nonlinear

differential equations resulting from application of Kirch-

hoff’s voltage law and Kirchhoff’s current law using the

constitutive relations (i.e., the element characteristics). The

methods fall into three groups according to the way in

which the nonlinear elements are treated: time-domain

methods, hybrid (harmonic balance) methods, and fre-

quency-domain methods. The work we report here is of the

frequency-domain type; that is, it avoids explicit time-

domain calculations. This is accomplished through expan-

sion of the input–output characteristics of the nonlinear

elements in a set of basis functions of which there are three
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basic types: Volterra series [1]-[6], algebraic functional

expansion [7]–[9], and power series. With frequency-

domain spectral balance analysis, power-series-based tech-

niques are proving to be the most general methods for the

analysis of nonlinear circuits with multifrequency large-

signal excitations. This approach has been investigated by

a number of researchers as the basis for hand calculations

as well as for computer-based simulations [10]–[17]. We

continued the development of this type of series [18],

resulting in the form (called a generalized power series)l

Y.q= ~ aw~, n
~=() Kixk(’-rk)lnloq‘1)

where Yti~ is the frequency-domain system output at ra-

dian frequency ti~, n is the order of each power series

term, atiq,. is an u~ and n dependent complex coefficient,

r~ is a time delay that depends on the input frequency ~,,

x(t) is the independent variable, and the notation

{ ~(x)}~, represents the phasor.form of the O, component
of the time-domain function ~(x). A complex power series

with frequency-dependent time delays can simply incorpo-

rate many memory effects, and only a few terms of the

series expansion may be required. Therefore, a much larger

class of systems can be mathematically modeled by a

generalized power series (GPS) expansion than by a con-

ventional power series expansion. For most microwave

applications, circuits are typically made up of only a few

circuit elements so that simulation can proceed without

using complex coefficients. Time clelays can be included by

phase shifting of the input signal.

With the GPS description of the nonlinear system, alge-

braic formulas for the system output when the input is a

sum of sinusoids have been developed [18]–[20]. This

method uses an input/output transform table (the inter-

modulation product descriptions) and is more accurately

referred to as generalized power series analysis using the

table method (GPSA-TM) to differentiate it from the

extension developed here. The formulas used in GPSA-TM,

however, are complicated and difficult to understand. In

addition, using the transform table in this method pro-

duces many repetitive calculations which degrade the cir-
cuit analysis efficiency.

lThe nomenclature has been changed sli ghtly for compatibility with the

work presented here.
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GPSA-TM is practically restricted to one-dimensional

(l-D) nonlinearities. It has been extended to two-dimen-

sional (2-D) nonlinearities but the formulas are even more

complicated [21] and its computer implementation is ex-

pected to be inefficient. In Section III, a newly developed

frequency-domain spectral balance technique, the general-

ized power series analysis using the arithmetic operator

method (GPSA-AOM) is presented. GPSA-AOM is

straightforward, easy to implement, and handles multidi-

mensional nonlinearities. It is also considerably faster than

the GPSA-TM for single dimensional nonlinearities.

II. DEVELOPMENT OF CIRCUIT EQUATIONS

One approach used to solve the system of nonlinear

equations is to formulate the nonlinear problem so that a

Newton iteration scheme can be used. In this section we

develop a block matrix formulation of the nonlinear circuit

equations and combine this with a Newton iteration scheme

which uses a combination of full Newton iteration, block

Newton iteration, and chord iteration [22] to obtain a fast

nonlinear analog circuit simulator. In the formulation of

the nonlinear circuit equations, no explicit separation of a

circuit into linear and nonlinear subcircuits is made.

A. Circuit Equations

If K different frequency components exist in an analog

nonlinear circuit, computer-aided analysis in the frequency

domain solves a system of nonlinear equations:

M(x)x=y (2)

where

[

T
~= X:. Xfl . . .

1xf(K–1) . (3)

Here T indicates the transpose and XWA is the variable

vector to be solved which contains the necessary node

voltages and edge currents at radian frequencies u~; the

source vector y, which includes all the independent sources,

is similarly defined as x in (3); and the x-dependent

matrix iti?( x), the modified nodal admittance matrix [23],

is the circuit matrix of the analog nonlinear network.

Solution of the nonlinear circuit equations (2) is based

on the process of successive approximations. After each

iteration i, a new approximation of the variable vector, ‘x,

produces an induced source vector y(’x):

M(’x)zx=y(’x). (4)

Newton’s method, or a variant of it, forms the basis of

most iterative procedures in nonlinear circuit analysis. This

method is based on the general relationship

j(x)=o

where f(’x ) is a vector with the same dimension as the

variable vector x. It is composed of the absolute values

of the corresponding entries of the difference vector be-

tween the independent source vector y and the induced

source vector y(’x ). The iteration formula for Newton’s

method is
,+lX=IX _ J-l(’x) f(’x),

i = 0,1,2,... (5)

where .J(ZX) is the Jacobian matrix of ~ in the i th iteration

and J– l(’x ) is its inverse.

Fortunately, in solving the nonlinear circuit equations

(2) using iterative procedures (5), the whole circuit matrix

M(’x) need not be calculated. Both the Jacobian matrix

J(2X) and the induced source vector y(zx), which forms the

error function f(’x), can be obtained partially from the

linear part of the circuit matrix AZ and partially from the

variable vector ‘x using nonlinear circuit analysis tech-

niques either in the frequency domain (power series analy-

sis) or in the hybrid domain with Fourier transform tech-

niques (harmonic balance method).

B. Circuit and Jacobian Matrices

The circuit matrix M(x) in (2) can be viewed as a

matrix composed of K by K block matrices:

M(x)

r ~o.o(~) ~,,,(x) ~~~ M O,K-,(X) ]

_ ~1.o(x) Ml,l(x) . . . M1, K_l(x)

. . .

1%-;.o(d %;,,(x) “ “ “ %1,2X)]
(6)

Each block matrix lf~, ~(x) is a matrix with input fre-

quency index k and output, or objective, frequency index

q, and has the same m x m where m is the dimension of

the corresponding vector x~~ in (3). Reducing xu~ to its

minimum required size will always reduce the size of the

matrix M(x) and decrease the complexity in circuit analy-

sis. The minimum required variables of xti~ include all the

node voltages of the admittance-type nonlinear elements,

all the edge currents of the impedance-type nonlinear

elements in the circuit, and any node voltages or edge

currents of interest for the final results.

Entries in each matrix kf~, ~(x) may not be x-dependent

because they are generated from all the elements of the

circuit. In most cases, linear elements of the circuit create

entries in Mq, ~( x) which are independent of the variable

x, and nonlinear elements add x-dependent values to some

of the entries. However, by using the modified nodal

admittance matrix, some nonlinear elements, such as non-

linear inductors, will create x-independent entries as well.

If lfl~(~ ~, represents the modified nodal admittance ma-

trix generated from all the linear elements of the circuit

plus those x-independent entries generated from all the

nonlinear elements of the circuit, we have

~q, k(x) = Mm(q, k) + ~D(q, k)(x)

where the x-dependent matrix kf~(~, ~~( x) derives from the

nonlinear elements, and matrix MID( ~ ~, is always a zero

matrix if q is not equal to k.

Similarly, the Jacobian matrix .J(’x) in (5) has the same

structure as M(x) in (6). Each block matrix Jq,~(zx) repre-

sents the block Jacobian matrix for input frequency ok

and objective frequency u~ and has the same size as
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Mq, ~(x). As before, each block Jacobian matrix Jq,~(iX) is

a combination of two matrices:
F1--l

Jq,~(’x)= h(q,/c)+ %(q,k)(k). (7)
T- I

The matrix J&tq, ~, in (7) is x-independent, and r-----1 I
JJD(q, k) =MID(q, k).

I
BLOCK

NE WTOIV METH0,9 II R<l

For efficient calculations, each complex independent vari-

able A’; of Xtiq can be separated into real and imaginary
parts, and each complex entry Yj,, in matrix JID(q,k, can

also be represented by a 2 x 2 matrix of real entries: .=7

[

Re{q,l} –Im{~,l}

“[= Im{~,l} IRe{~,l} “
(8) k’

Fia 1. Ihe alzorithm used to determine the method to be used in

Since JIDcq,k) is iteration number i independent, it can
~inding the p~esent iterate value of x. R is the ratio between the

current converged error and the previous converged error.

be calculated just once. However, the x-dependent Jaco-

bian‘atrix ‘D(q, k)(’x) cam OnlY be ‘bttined ‘sing ‘Onlin-
ear analysis and must be reevaluated if a new Newton

iteration is required.

In addition to the Jacobian matrix Y(’x), solution of the

circuit equations (2) using the iterative procedures (5) also

requires calculation of the induced source vector y(’x) for

each iteration i. Assuming that yoq(ix) is the component

vector of y(’x ) at radian frequency Oq, the calculation of

Ytiq(’x) can be performed as

.VOq(’x)= Mm(q, k;xmq + yNL,@q,(iX), k= q (9)

where YNL(Uq) (’x) represents the induced source vector of

all the nonlinear elements at radian frequency Uq. Both

~(,, k)(’x) in (7) and Yaw in (9) can be obtainedJ
using nonlinear analysis techniques.

C. Block Newton Iteration

Equation (5) is frequently used in nonlinear circuit anal-

ysis to minimize the objective function because of its

asymptotic rate of convergence. However, evaluation of

the whole Jacobian can be time consuming. In a nonlinear

circuit the major coupling between currents and voltages is

when the components are at the same frequencies. Conse-

quently a modified form of Newton’s method [24] (block

Newton) can be used;

If the number of frequencies considered in the circuit

analyzed is K and the size of each Jq,k(’x) is m x m, the

dimension of the full Jacobian matrix J(’x) is mK X mK.

For a complete Newton’s method, J- l(ix) f(’x) must be

calculated. For either type of matrix factorization, PLU or

QR, the arithmetic cost of the calculation on matrix J(rx)

is always proportional to ( mK )3. However, from (7), the

x-independent matrix JI~(q, k) is a nonzero matrix only if

q = k. For most microwave nonlinear analog circuits, the
values of those derivatives in the diagonal blocks ~D(q,~,(2X)

are normally larger than those values in the off-diagonal

blocks J’D(q,k, (’x), q #k. Therefore, by calculating only the

diagonal blocks of the Jacobian matrices Jq,q(’x) (q=

0,1,. ... K – 1), the cost of matrix calculation will be K2

times lower than the cost for calculation of the full Jaco-

bian form. That is, to solve K separate iterative procedures

simultaneously,

1+1
x

~q
= ‘Xmq — Jq;&) Lq(zx) (lo)

where q= O,l,. ... K – 1. This method uses only the diag-

onal blocks of the full Jacobian matrix.

Both the Newton and the block Newton method can be

combined with the chord method to obtain further compu-

tational improvement. The chord method uses the previous

J for the present iterative process, regardless of the method

used in the previous iteration. Thk can save considerable

Jacobian matrix calculation time and eliminates the need

for matrix inversion. The convergence algorithm just de-

scribed is summarized in Fig. 1.

III. GPSA ARITHMETIC OPERATOR METHOD

The GPSA arithmetic operator method (GPSA-AOM) is

based on direct complex multiplications and additions. It

is similar to the approach taken by Haywood and Chow

[25]. However, instead of using the spectrum convolutions,

a simple spectrum mapping function is used for each

spectral multiplication.

If we consider the system output y(t) to be a function

of two independent variables x(t) and z(t),

x(t) = f Xn(t) = f l)~nlcos(~n~+$n)
~=o ~=o

and

~=() m=o

the generalized power series for the output Y@~ at the

objective radian frequency tiq is etpressed as

[ I). f zm(t- Am) “ (11)
??1= 0 ~4
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where u~ is the objective frequency, u and p are the orders

of the power series terms, a .~,., ~ are complex coefficients

in the frequency domain, and Tn and ~ ~ are time delays

that depend on the indexes of the input frequency compo-

nents. The spectrum of x can be represented as a vector:

(12)

where XU~ = X:tiA and “ *” indicates the complex conju-

gate. The spectrum vector for z(t) is similarly defined. For

analysis purposes, we may simplify (11) to be an ordinary

two-variable-dependent power series by using phase shift-

ing of the spectra of x(t), z(i), and y(t) to eliminate time

delays

The

and complex coefficients:

mm

Y(t) = Z X ao.ox”(t)zp(t). (13).
u=op=o

output spectrum s., for the basic operation Y = xz. .
T Let SY ‘be thecan be found from the pr~duct of SX and s=.

matrix of the product of SX and sz~:

s,= Sxs:. (14)

Then each element of SY represents a component of the

spectrum of the signal y, and has the value X., ZUJ and

frequency Ui + u,. By combining the same frequency en-

tries, SY can be converted into a vector form SY:

1
sp=T[Y_2tiK ““” 2% ““” ‘2coK1‘“ (15)

The contributions of higher order cross products of SX and

s= can be obtained using the recursive application of (14)

and (15).

Implementation in the Newton iteration process requires

derivatives of the value in each entry of vector SY with

respect to all the different independent variables X and Z.

These derivatives of each entry in SY can be obtained by

using the chain rule and complex multiplications and

additions.

The calculations for system outputs presented in (14)

and its derivatives are basic components of GPSA-AOM.

Some techniques can also be used to modify this method

to obtain increased computational efficiency.

A. Spectrum Limiting

Equation (14) shows that the spectrum vector SY of the

dependent variable y(t) for y(t) = x(t)z(t) can be created

from the product of the two spectrum vectors SX and s= of

the two independent variables x(i) and z(t). However, not

all of the entries in Sp are required as objective frequen-

cies, and some of the rest are useful for the higher order

calculations only. Calculating those undesired entries will

consume much computer computation time and contribute

little to the final results. Therefore, if the number of

objective frequencies considered in a system is large enough

to describe the system nonlinearities, the frequency com-

ponents of the spectrum of y can be limited to contain

i
2
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6 mZuj
k, j k,

+1 1 +1

+1 o +1

–1 3 +1

+1 2 –1

–1 5 +1

+1 4 –I

–1 6 +1

+1 5 –1

(a)

Sz s, %

Fig. 2. An example of spectrum mapping for GPSA-AOM. (a) A map-
ping function used for the objective frequency til. (b) The required

complex multiplications for the objective frequency til using the map-

ping defined in (a).

these frequencies only. Any additional frequencies which

are created by the product of SX and s, can be eliminated

from SY.

B. Spectrum Mapping

To evaluate the nonlinear system output y(t)= x(t)z(t)

with spectrum limiting on all the dependent and indepen-

dent variables, some complex multiplications are dis-

carded. These redundant multiplications will also consume

much time in frequency searching operations. To avoid

this redundancy, a mapping function can be used. This

results in considerable computation time reduction when

the frequencies under evaluation are poorly correlated.

The spectrum mapping function relates the components

of the output spectrum to the spectra of two inputs where

the output is the product of the two inputs. Fig. 2 is an

example. Assume two sinusoidal signals of 3 GHz and 3.05

GHz are applied to a nonlinear system, and the considered

frequencies include all the first- and second-order inter-

modulation products. For second-order intermodulation

product IF( ~1) =50 MHz, assuming RF( ~z) = 3 GHz and

LO(~3) = 3.05 GHz, the mapping function of y = xz can

be set as shown in Fig. 2(a). In Fig. 2(a), i and j represent

the frequency indexes used in each multiplication and k

being “ – 1“ indicates that the indicated component of X

or Z is to be complex conjugated. For instance, if i = 3,

k, = +1, j =2, k~ = – 1, the complex multiplication for

this combination N Xti3Z~2. Since all the dependent and

independent variables are spectrum limited to the same

length, the same spectrum mapping function can be used

for the product of any two different variables if the consid-

ered objective frequency is the same. Moreover, the same
function can be used in derivative calculations. Fig. 2(b)

illustrates the usage of spectrum mapping to insert all the

results of the required complex multiplications of X., and

Zml yielding the entry Y@l.

C. Power Series Factoring

Factoring of the power series can be used to reduce the

amount of computation. Consider a one-dimensional non-

linearity defined by

y=ao+alx +a2x2+. ..+a~x~. (16)

This requires (N – 1) spectral multiplication operations.
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L––––––_––_–– ––~–––_–––_––– –––J

s

Fig. 3. Circuit used to model the MESFET which includes linear as

well as nonlinear elements. Nonlinear elements include Cg,, Cd,, Cgd,

and Id,, where Id, is a function of both intrinsic voltagesVg~ and Vd,.

Factoring the power series, the maximum order of x in

(16) can be reduced to half,

y= (bo+blx+ “-” +bN/2x~q2

+ (co+ Clx + .0. + c(N/2)_1x@/2)-l ) (17
if N is even, or

[y=ao+x (do+dlx+ . ..+~(N_1).2X(N-1)/2)2

)]()+(eO+elx+ . . . +e(~_3),2x(~-3)12 18

if n is odd. Now N/2 (or (N+ 1)/2) operations are needed

for (17) (or (18)). Each operation involves many floating

‘ point calculations, and the amount of computation re-

quired to factor the power series is relatively small. If N is

large, factoring the power series once can result in up to 50

percent reduction in computer time.

IV. DEVICE CHARACTERIZATION

The arithmetic operator method was compared to mea-

surements using a medium-power GRAS MESFET, Avan-

tek AT8250, and the transistor model of Fig. 3. In the

equivalent circuit, Cg,, Cgd, and Cd. were taken to be

one-dimensional nonlinear elements. The procedure used

to determine the model parameters is described in [19],

and yielded the linear element values of Table I. With the

linear element values fixed, the model of Fig. 3 was opti-

mized to match the measured s parameters at each bias

setting, resulting in nonlinear element values as a function

of bias voltage. A least-squares technique was used to fit

power series to these data. The power series descriptions of

the capacitances (Cg,, Cgd, and Cd.) are shown in Table II

and their optimized values are compared to their power

series representations in Figs. 4 and 5.

The nonlinear element Id, is a function of both intrinsic

~g. and Vd. (i.e., the voltages across C.. and Cd, respec-
twely) and has a bivariate power series description as

shown in Table III. Fig. 6 shows the optimized values of

the transconductance G~ compared to the values calcu-

lated from the bivariate power series expansion. Fig. 7

shows the values of Ids with respect to intrinsic Vg, and Vd,
calculated from this power series. The valid range of this

TABLE I

THE LINEAR ELEMENT VALUES USED

IN THE MODEL OF THE AVANTEK

AT-8250 GAAS ME,SFET

~=

masC;2 0.30707 pF

R, :2.90

R, :2.4 ~

L. 0.00323 nH
R~ ~5.3 n

L~ 0.41143 nH

cd2 0.0’9012 pF

cdl 0.01D341 pF

RI 10 a
T 6.56 PS

TABLE II

THE POWER SERIES COEFFICIENTS USED IN THE MODEL OF THE
AVANTEK AT-8250 GAM MESFET

1

Power Series Coefficients for Nonlinear Elements I

Order cd. (PF) ~ %%++

o 0.286 0.62C139 0.34697
Ii

1 –0.022345

2 0.0043288 1 :%-

3 –0.0003038

4 I -0”22-

“Or---71

0,0wJ--LJJ----I
-1.0 -050 0.0 0.50

Vgs (v)

Fig. 4. Optimized vafues of the gate–sou rce capacitance C, as a func-
tion of gate–source voltage. The points are the optimize ~ vafues and

the curves are the power series represermations.

power series description is from ~r, = – 1.7 V to P’g,= 0.75

V and V~, = 0.4 V to Vd, = 5 V, corresponding to an input

power of about 10 dBm.

V. RESULTS AND DISCUSSION

GPSA-AOM has been implemented in a C language

program called I?REDA2 (for Frequency Domain Analy-

sis). This is a net-list-based progri~m and can handle arbi-

trarily large nonlinear analog circuits. Results of simula-
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0.30

0.25

r
g

8

0.20

0,15

00 1. 2. 3. 4, 5

!fcjg(vd,) (V)

Fig. 5. Optimized values of the drain-source capacitance Cd. as a

function of drain-source voltage and the gate–drain capacitance Cgd

as a function of drain-gate voltage. The points are the optimized

values and the curves are the power series representations.

:.r17
80.

80.

40

20.

00
-0,0 1“00 2.00 3,00 4,00 500

Vds (V)

Fig. 6. The transconductance as a function of intrinsic drain-source

voltage. Optimized values (points) are compared to the values calcu-

lated from the bivariate power series expression for intrinsic gate–source
voltages of – 0.8, – 0.6, – 0.4, – 0.2, – 0.1, 0.0 and 0.1 V.

tions using FREDA2 and the two-dimensional circuit

model of Fig. 3 are compared to measurements in Figs. 8

and 9 for single-tone and two-tone excitations. The simu-

lated results (curves) are in good agreement with the

experimental results (points). Computer run time for the
single-tone test is presented in Table IV for various num-

bers of frequencies considered. Times are given for differ-

ent input powers ( – 10, 0, and 10 dBm) with zero initial

guess, and for a sweep of the input power from – 10 dBm

to +10 dBm with 0.5 dB step size. (While sweeping the
input power, the initial guesses of the variable values in

each power step are based on the final values of the

previous step.)

The primary advantage of the arithmetic operator

method in frequency-domain spectral balance, compared

to the earlier reported table method, is the 2-D model

simulation capability. Even with this extended capability,

AOM is about ten times faster than TM [19], [26]. AOM

80.

60.
z
&

m
2 40

20

nn

““00 1.00 2.00 3,00 400 500

Vds (V)

Fig. 7. The drain-source current as a function of intrinsic drain-source

voltage for the Avantek AT-8250 GRAS MESFET. The values are

calculated from the bivariate power series expression for intrinsic

gate-source voltages of – 0.8 V to 0.5 V in 0.1 V steps.

20.

-40.

-s33, ~
-lo -50 00 50 10

INPUT POWER (dBm)

Fig. 8. The results of the single-tone test for the Avantek AT-8250

using a 3 GHz fundamental. Shown are the simulated (curves) and

measured values (points) for the power output at the fundamental, the
second harmonic, and the third harmonic as a function of input power

has good convergence properties and simulation can be

achieved with large input powers and zero initial guess.

However, if a sweep of the input power is required, it is

more efficient to use the results of the previous lower input

power simulation as an initial guess of the circuit variables.
We attribute the good convergence properties to the use of

analytic derivatives rather than numerical derivatives. The

analytic derivatives need to be calculated to double preci-

sion to obtain convergence at the higher input power levels
if the system nonlinearities are modeled with high-order

power series. This level of precision cannot readily be

obtained by taking derivatives numerically.

As mentioned in Section II, a mix of the Newton, block

Newton, and chord methods is used in the simulation to

obtain an efficient simulator. This iteration scheme greatly

enhances the speed of FREDA2. For almost every case in

the single-tone and two-tone test, one or two block New-

ton methods followed by several chord methods are enough
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TABLE III

ThE BIVARIATE POWER SERIESCOEFFICIENTSUSEDFOR ZJ$IN THE MODEL OFTHF
AVANTEK AT-8250 GAAS MESFET

Order of Order of Vd. Term
V& Term o 1 2 3 4 5 f’=

o –0.00001156555 0.07625879 –0.1056094 0.07761516

a

–0.0313192 0.007058957 –0.0008327161 0.00004002119
1 –0.00006103041 0.3069145 -0.4733609 0.3675621 –0.1555473 0.03641407
2

–0.00442661 0.0002179638
0.002515452 0.3475555 –0.6445619 0.5434066 –0.2414711 0.05823406 –0.007202639 0.0003578266

3 0.01210829 –0.2693955 0.4357904 –0.3522143 o.1566408 –0.0387f.469 0.004976994 –0.0002589956
4 0.01565735 –0.8516739 1.804808 –1.620442 0.7466659 –0.184505 0.0232377 –0.001171287
5 –0.004989491 –0.2561477 0.7083704 –0.6889429 0.3238367 –0.07946466 0.009787713
6

–0.0004777691
–0.02538143 0.6769809 –1.477119 1.344364 –0.6245825 0.1552918 –0.01966353 0.0009961386

7 –0.01647188 0.6183949 –1.461959 1.367254 –0.6390305 0.1582496
8 –0.004226292

–0.01984881
0.1523607

0.0009928612
–0.3733957 0.3534024 –0.1655718 0.04091728 –0.005106844 0.0002540126
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Fig. 9. The results of the two-tone test for the Avantek AT-8250 using
two equal-amplitude signals input at 2.35 GHz and 2.4 GHz. Shown
are the simulated (curves)and measuredvalues(points) as a function
of input power for the power output at 2.35 GHz, and the third-order
intermodulation product at 2.3 GHz.

TABLE IV

COMPUTER RUN TIMES FOR THE SINGLE-TONE TEST

Input power sweeps
No. of Input Power Input Power Input Power from –10 dBm to 10 dBm
Freq. –10 dBm O dBm +10 dBm with step size 0.5 dB

3 1.6 1.9 4 30
4 2.3 2.7 6 53
5 3.1 3.9 8 83
6 4.2 5.1 11 123
7 5.2 6.6 14 173
8 6.7 8.3 17 234
9 8.2 10.3 21 300

Times are given in seconds and were measured on a VAX station 3200.

The number of frequencies considered is the number of harmonics plus 1
for dc.

to reduce the system errors to the required limit. Using the

Newton method with full Jacobian matrix evaluation in-

stead of the block Newton method will lengthen simula-

tion time by a factor of K 2, where K is the number of
objective. frequencies.

VI. CONCLUSION

In this paper we presented a new frequency-domain

spectral balance method, called generalized power series

analysis using the arithmetic operator method (GPSA-

AOM). Coupled with an enhanced convergence algorithm

using a mix of Newton, block Ntwton, and chord meth-

ods, GPSA-AOM is suited to the analysis of nonlinear

analog circuits. The technique is straightforward and can

handle two-dimensional nonlinear elements in the fre-

quency domain. The simulation of a MESFET amplifier

with single-tone and two-tone inputs was compared to

measurements to verify the method.
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